

Name: _____

Circular Motion

Mark Scheme

Date:

Time:

Total marks available:

Total marks achieved: _____

Mark Scheme

Q1.

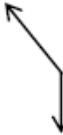
Question Number	Answer	Mark
	B	1

Q2.

Question Number	Answer	Mark
	C	1

Q3.

Question Number	Answer	Mark
	D	1


Q4.

Question Number	Answer	Mark
	B	1

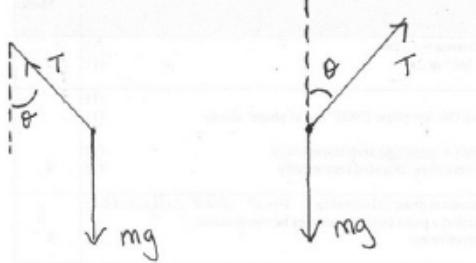
Q5.

Question Number	Answer	Mark
	B	1

Q6.

Question Number	Acceptable answers	Additional guidance	Mark
	B The two forces acting on the mass are its weight (vertically down) and a tension in the thread.		1
	A assumes there is a centripetal force only C assumes there is an additional centripetal force D assumes the additional centripetal force acts away from the centre of the circle		

Q7.


Question Number	Answer	Mark
	A	1

Q8.

Question Number	Acceptable answers	Additional guidance	Mark
(a)	<ul style="list-style-type: none"> use of $F = Gm_1m_2/r^2$ (1) force = 6.5×10^{31} N (1) 	<u>Example of calculation</u> $F = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 29 \times 1.99 \times 10^{30} \text{ kg} \times 36 \times 1.99 \times 10^{30} \text{ kg} / (6.5 \times 10^{31} \text{ m})^2$ force = 6.5×10^{31} N	2

Question Number	Acceptable answers	Additional guidance	Mark
(b)	<p>Either</p> <ul style="list-style-type: none"> use of $F = mv^2/r$ ecf from (a) (1) use of $v = 2\pi r/T$ (1) $T = 1.1 \times 10^6$ s (1) <p>Or</p> <ul style="list-style-type: none"> use of $F = m\omega^2 r$ ecf from (a) (1) use of $\omega = 2\pi/T$ (1) $T = 1.1 \times 10^6$ s (1) 	<u>Example of calculation</u> $F = mv^2/r = m(2\pi r/T)^2/r$ $T^2 = 4\pi^2 mr/F$ $= 4\pi^2 \times 29 \times 1.99 \times 10^{30} \text{ kg} \times 3.6 \times 10^{10} \text{ m} / 6.5 \times 10^{31} \text{ N}$ $= 1.21 \times 10^{12} \text{ s}^2$ $T = 1.12 \times 10^6 \text{ s}$ $= 18700 \text{ min}$ $= 312 \text{ hours}$ $= 13 \text{ days}$	3

Q9.

Question Number	Answer	Mark
	<p>Free body force diagram showing 2 forces only Weight W/mg (1) Tension T (1) (Each additional forces e.g. horizontal component or resultant force, 1 mark penalty)</p> <p>If θ is angle to the vertical then: (Resolving vertically): $T\cos\theta = mg$ (1) (Resolving horizontally): $T\sin\theta = mv^2/r$ Or $T\sin\theta = mr\omega^2$ (1) Derives $\tan\theta = v^2/rg$ and links to observations Or Derives $\tan\theta = r\omega^2/g$ and links to observations (1)</p> <p>If angle to horizontal is used candidates can score MP3 and 4.[then sin and cos swap over and tan of angle will be reciprocal of above]</p> <p><u>Examples of free body force diagrams</u></p> <p>(full credit for the last 3 marks can be given to candidates who draw a vector triangle and derive $\tan\theta = T_{\text{horz}}/mg$ and then $\tan\theta = r\omega^2/g$ and observation)</p>	5
	Total for question	5

Q10.

Question Number	Answer	Mark
(a)	<p>Evidence of frictional force = $(0.35 \times mg)$ Use of $F = mr\omega^2$ Or $F = mv^2/r$ Use of $\omega = 2\pi/T$ Or $v = 2\pi r/T$ $t = 3.0 \text{ s}$</p> <p><u>Example of calculation</u> frictional force = $0.35 \times 20 \text{ kg} \times 9.81 \text{ m s}^{-2} = 68.7 \text{ N}$ $F = mr\omega^2$ $\omega = \sqrt{(68.7 \text{ N} / (20 \text{ kg} \times 0.80 \text{ m}))}$ $\omega = 2.1 \text{ rad s}^{-1}$ $t = 2\pi/2.1 \text{ rad s}^{-1}$ $t = 3.0 \text{ s}$</p>	(1) (1) (1) (1) 4
(b)	<p>There would be no difference</p> <p>Both expressions for force depend on mass Or algebraic equation for ω or T derived (could be in the working for (a)) showing ω or T independent of m Or statement that masses cancel if supported by evidence in (a)</p>	(1) (1) 2
	Total for question	6

Q11.

Question Number	Answer	Mark
(a)	<p>Only (moving) charged particles are deflected by a magnetic field Or Only charged particles can be accelerated to produce a beam</p>	(1) (1) 1
(b)	Into the page	(1) 1
(c)	<p>Use of $F = mv^2/r$ Or use of $r = p/BQ$ Use of $F = Bqv$ Or use of $p = mv$ $m = 6.64 \times 10^{-26} \text{ kg}$</p> <p><u>Example of calculation</u> $mv^2/r = Bqv$ $m = Bqr/v = (0.673 \text{ T} \times 1.6 \times 10^{-19} \text{ C} \times 7.40 \times 10^{-2} \text{ m}) / 1.20 \times 10^5 \text{ m s}^{-1}$ $m = 6.64 \times 10^{-26} \text{ kg}$</p>	(1) (1) (1) 3
(d)	Semicircle drawn starting from same initial point <u>and</u> a smaller radius	(1) 1
	Total for question	6

Q12.

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	<ul style="list-style-type: none"> The ions experience a force perpendicular to their velocity (and the magnetic field) (1) The (resultant) force on the ions causes an acceleration at right angles to their velocity (1) <p>Or There is a magnetic force acting towards the centre of the path</p>	For velocity accept direction of motion or direction of travel	2

Question Number	Acceptable Answer	Additional Guidance	Mark
(ii)	<ul style="list-style-type: none"> Use of $r = \frac{mv}{BQ}$ (1) $r = 0.23$ m (1) 	<u>Example of calculation:</u> $r = \frac{mv}{BQ}$ $= \frac{(34.97 \times 1.66 \times 10^{-27}) \text{ kg} \times 2.2 \times 10^5 \text{ ms}^{-1}}{0.35 \text{ T} \times 1.6 \times 10^{-19} \text{ C}} = 0.228 \text{ m}$	2

Question Number	Acceptable Answer	Additional Guidance	Mark
1 (iii)	<ul style="list-style-type: none"> path drawn with less curvature (less overall deflection) (1) 	MP1 awarded for path in the magnetic field	1

Question Number	Acceptable Answer	Additional Guidance	Mark
2 (iii)	<ul style="list-style-type: none"> ions are more massive (1) ions have the same charge so the radius of the path would be greater (1) 		2

Q13.

Question Number	Answer	Mark
(a)(i)	$R = 9.32 \text{ kN}$ <u>Example of answer</u> $R = 950 \text{ kg} \times 9.81 \text{ m s}^{-2}$ $R = 9320 \text{ N}$	(1) 1
(a)(ii)	Use of $F = mv^2/r$ $R = mg - mv^2/r$ $R = 2480 \text{ N}$ ecf their value of R <u>Example of calculation</u> $R = 9320 \text{ N} - (950 \text{ kg} \times 12.0^2 \text{ m}^2 \text{ s}^{-2} / 20.0 \text{ m})$ $R = 2480 \text{ N}$	(1) (1) (1) 3
(b)	An answer that either states implicitly or implies that 'The required centripetal force $> mg$ and so cannot be provided'.	(1) 1
	Total for question	5

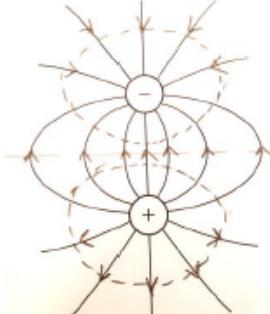
Q14.

Question Number	Answer		Mark
(a)	Use of $v = 2\pi r/t$ Or $v = r\omega$ and $T = 2\pi/\omega$ $t = 1.5 \times 10^3$ s [24.6 minutes] <u>Example of calculation</u> $t = 2\pi r/v$ $t = (2\pi \times 61 \text{ m}) / 0.26 \text{ m s}^{-1}$ $t = 1473 \text{ s}$	(1) (1)	2
(b)	Use of $F = mv^2/r$ $F = 11 \text{ N}$ <u>Example of calculation</u> $F = 9.7 \times 10^3 \text{ kg} \times (0.26 \text{ m s}^{-1})^2 / 61 \text{ m}$ $F = 10.7 \text{ N}$	(1) (1)	2
(c)(i)	Three arrows all pointing to the centre of the circle (accept free hand and lines of varying length)	(1)	1
* (c)(ii)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) Maximum at C / bottom and Minimum at A / top At C contact/reaction force (R) greater than weight (accept $R - W = mv^2/r$ or $R = W + mv^2/r$) At A contact/reaction force is less than the weight. (accept $W - R = mv^2/r$ or $R = W - mv^2/r$) Any statement that centripetal force / acceleration is provided by weight/reaction Or centripetal force is the resultant force This is a qwc question so a bald statement of the equations can score the marks but to get full marks there must be clear explanation in words.	(1) (1) (1) (1)	4

Q15.

Question Number	Answer	Mark
(a)	Velocity/direction changing Or (object is) accelerating Force towards centre of circle	(1) (1) 2
(b)	High(er) speed means large(r) force Or small(er) radius means large(r) force (For sharp bends) centripetal/resultant/required <u>force</u> would need to be greater than maximum frictional force Or (for sharp bends) friction cannot provide the (required) centripetal/resultant force	(1) (1) 2
(c)(i)	Resolving forces vertically $N \sin \theta = mg$ Resolving forces horizontally $N \cos \theta = mv^2/r$ Division of vertical equation by horizontal equation to get correct answer	(1) (1) (1) 3
(c)(ii)	Use of $\tan \theta = gr/v^2$ $\theta = 57^\circ$ <u>Example of calculation</u> $\tan \theta = (9.81 \text{ m s}^{-2} \times 18.7 \text{ m}) / (11.0 \text{ m s}^{-1})^2$ $\theta = 56.6^\circ$	(1) (1) 2
	Total for question	10

Q16.


Question Number	Answer	Mark
(a)(i)	See $F = GMm/r^2$ Equated to mg to give required expression Or use of $g = F/m$	(1) (1) 2
(a)(ii)	Use of $g = \omega^2 r$ OR $g = v^2/r$ Use of $\omega = 2\pi/T$ OR $v = 2\pi r/T$ Correct algebra leading to expression given <u>Example of calculation:</u> $\omega^2 r = \frac{GM}{r^2}$ $\left(\frac{2\pi}{T}\right)^2 = \frac{GM}{r^3}$ $r^3 = \frac{GMT^2}{4\pi^2}$	(1) (1) (1) 3
(a)(iii)	See $T = 24$ hours T converted into s $r = 4.2 \times 10^7$ m <u>Example of calculation:</u> $T = 24 \times 60 \times 60$ s = 86 400 s $r^3 = \frac{GMT^2}{4\pi^2} = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 6.0 \times 10^{24} \text{ kg} \times (86400 \text{ s})^2}{4\pi^2} = 7.57 \times 10^{22} \text{ m}^3$ $r = \sqrt[3]{7.57 \times 10^{22} \text{ m}^3} = 4.23 \times 10^7 \text{ m}$	(1) (1) (1) 3
(b)	The satellite must rotate with the Earth Or the satellite must be in a geosynchronous orbit Or any non-equatorial orbit would cause the satellite to move N-S	1
Total for question		9

Q17.

Question Number	Answer	Mark
(i)	Outward spiral from centre in either direction, minimum of two complete loops	(1) 1
(ii)	Direction consistent with diagram: Clockwise path, field out of page Anticlockwise path, field into page	(1) 1
(iii)	Electric field/p.d. between dees causes (resultant) force/acceleration Proton makes half a revolution in half a cycle of the a.c. Or facing dee (always) negative when proton reaches gap. Or whenever the proton gets to a gap, the p.d. has reversed k.e./speed (only)increases each time the proton crosses the gap Or work done by the field in the gap increases the k.e.	(1) (1) 3
(iv)	$Bev=mv^2/r$ Or $r=p/Be$ $v=2\pi r/T$ $T=1/f$ (seeing $f=v/(2\pi r)$ scores MP2 & 3) Or $Bev=mr\omega^2$ $v=r\omega$ $\omega=2\pi f$ (seeing $v/r=2\pi f$ scores MP2 & 3)	(1) (1) (1) (1) 3
(v)	Use of $B=2\pi fm/e$ with mass of proton $f=1.8 \times 10^4$ Hz <u>Example of calculation</u> $f = eB/2\pi m$ $f = (1.6 \times 10^{-19} \text{ C} \times 1.2 \times 10^{-3} \text{ T}) / (2\pi \times 1.67 \times 10^{-27} \text{ kg})$ $f = 1.8 \times 10^4 \text{ Hz}$	(1) (1) 2

Q18.

Question Number	Acceptable answers	Additional guidance	Mark
(a)	<ul style="list-style-type: none"> Replace Work W by force \times distance Replace distance \div time by velocity v Use $v = r \times$ Angular velocity Recognise $F \times r$ is the moment of F 	(1) (1) (1) (1) Alternative method: Consider one revolution of axle , Load rises $2\pi r$ Work done = $2\pi r F$ Time taken = $2\pi \div \omega$ Power = Work \div time = $2\pi r F \div 2\pi / \omega$ to give reqd eq	4

Question Number	Acceptable answers	Additional guidance	Mark
(b)(i)	<ul style="list-style-type: none"> • Arrow away from + charge Or arrow towards - charge (1) • At least 3 Equipotential lines, perpendicular to field lines (1) • Symmetrical about vertical/horizontal axis and not touching/crossing (1) 	<p>MP3 dependent on lines being perpendicular in MP2</p>	3

Question Number	Acceptable answers	Additional guidance	Mark
(b)(ii)	<ul style="list-style-type: none"> • Use of $F = \frac{Q_1 Q_2}{4\pi\epsilon_0 r^2}$ (1) • $F = 0.036 \text{ (N)}$ (1) 	<p><u>Example of calculation:</u></p> $F = 8.99 \times 10^9 \text{ Nm}^2 \text{C}^{-2} \frac{(0.1 \times 10^{-6} \text{ C})^2}{(0.05 \text{ m})^2}$ $F = 0.036 \text{ N}$	2

Question Number	Acceptable answers	Additional guidance	Mark
(c)	<ul style="list-style-type: none"> • Use of moment = $F x$ (1) • Expression for correct moment (1) • Use of power = moment of force x angular velocity (1) • Only realistic possibility is pond pump and $P = 0.6 \text{ W}$ (calculated answer could also be force and then comparison with b(i)) (1) 	<p>Show that value gives $3.2 \times 10^{-3} \text{ Nm}$ and 0.64 W</p> <p><u>Example of calculation:</u></p> <p>Moment</p> $= 0.036 \text{ N} \times 0.04 \text{ m} \times 2 = 2.89 \times 10^{-3} \text{ Nm}$ <p>Power = $2.89 \times 10^{-3} \text{ N m} \times 200 \text{ s}^{-1} = 0.58 \text{ W}$</p>	4