

Name: _____

Waves

Mark Scheme

Date:

Time:

Total marks available:

Total marks achieved: _____

Mark Scheme

Q1.

Question Number	Answer	Mark
	C - polarisation	1
	Incorrect Answers: A – diffraction is exhibited by sound waves B – interference is exhibited by sound waves D – refraction is exhibited by sound waves	

Q2.

Question Number	Acceptable answers	Additional guidance	Mark
	D transverse, longitudinal		1

Q3.

Question Number	Acceptable answers	Additional guidance	Mark
	A Sound can travel through a solid.		1

Q4.

Question Number	Answer	Mark
	C	1

Q5.

Question Number	Answer	Mark
	D	1

Q6.

Question Number	Answer	Mark
	B	1

Q7.

Question Number	Answer	Mark
	C	1

Q8.

Question Number	Answer	Mark
	C	1

Q9.

Question Number	Answer	Mark
	C	1

Q10.

Question Number	Answer	Mark
(a)	Use of $c = f\lambda$ with $c = 3.00 \times 10^8 \text{ m s}^{-1}$ $\lambda = 1.37 \text{ m}$ <u>Example of calculation</u> $\lambda = 3.00 \times 10^8 \text{ m s}^{-1} / 2.186 \times 10^8 \text{ Hz}$ $\lambda = 1.37 \text{ m}$	(1) (1) 2
(b)	Frequency – number of oscillations/vibrations/cycles/waves per second Or number of oscillations/vibrations/cycles in unit time (ignore 'complete') (do not accept 1/period, unless period is defined appropriately) [accept number of wavelengths per second] Wavelength – distance travelled during one complete oscillation/vibration/cycle Or shortest distance between two points at the same stage of the cycle/in phase Or distance between identical points on adjacent waves (Accept distance between adjacent/neighbouring peaks/crests/troughs but not just 'distance between peaks' or 'length of wave')	(1) (1) 2
Total for question		4

Q11.

Question Number	Acceptable Answers	Additional guidance	Mark
(a)	<ul style="list-style-type: none"> Sound travels as a longitudinal wave Or in a series of compressions and rarefactions With oscillations/vibrations of (air) particles/molecules parallel to the direction of energy transfer 	(1) (1) Accept: Direction of energy transfer Or propagation of the wave Or direction of wave travel/motion	2

Question Number	Acceptable Answers	Additional guidance	Mark
(b)(i)	<ul style="list-style-type: none"> the idea that there is a wide variation in the first two readings 	(1)	1

Question Number	Acceptable Answers	Additional guidance	Mark
(b)(ii)	<ul style="list-style-type: none"> uses $\frac{\text{half the range of values}}{\text{mean value}}$ percentage uncertainty = 8.5% 	<u>Example of Calculation</u> $\frac{0.5 \times (0.51 \text{ s} - 0.43 \text{ s})}{0.47 \text{ s}} \times 100\% = 8.5\%$ Accept calculations based on $\frac{\text{range of values}}{\text{mean value}}$ (17%)	2

Question Number	Acceptable Answers	Additional guidance	Mark
(b)(iii)	<ul style="list-style-type: none"> attempt to calculate Δv (1) $\Delta v = 7.4 \text{ m s}^{-1}$ or 8.0 m s^{-1} (1) 	<u>Example of Calculation</u> $\frac{160 \text{ m}}{0.46 \text{ s}} - \frac{160 \text{ m}}{0.47 \text{ s}} = 7.4 \text{ m s}^{-1}$ <p>Use of 80 m ($\Delta v = 3.7$) scores MP1 only</p>	2

Question Number	Acceptable Answers	Additional guidance	Mark
(b)(iv)	Max 2: <ul style="list-style-type: none"> insufficient number of results (1) identifies one other variable to take into account (1) difference (in t or v) could be due to human reaction times (1) uncertainty in results may account for the difference (1) 	<p>Do not accept take readings over more days</p> <p>MP2 examples: wind speed/direction, humidity, air pressure</p> <p>MP3 do not credit human error</p>	2

Q12.

Question Number	Answer	Mark
(a)	To be able to distinguish which reflection comes from which emission Or so one pulse returns before the next one is emitted (1)	1
(b)	Use of $v = s/t$ (1) Correct use of factor of 2 (double distance or double time) (1) Pulse duration = $2.4 \times 10^{-3} \text{ s}$ (0.0024 s, 2.4 ms) (1)	3
	<u>Example of calculation</u> Time = $2 \times 0.4 \text{ m} \div 330 \text{ m s}^{-1}$ Pulse duration = $2.4 \times 10^{-3} \text{ s}$	
(c)	(Ultrasound) reflected away from the sensor Or (Ultrasound) reflected towards the floor (1)	1
Total for Question		5

Q13.

Question Number	Acceptable answers	Additional guidance	Mark
	<ul style="list-style-type: none"> use of $f = 1/T$ (1) use of $v = f\lambda$ (1) wavelength = 7.5×10^6 m (1) 	MP3: accept variations e.g. 1.75 waves or two wavelengths averaged with correct calculation <u>Example of calculation</u> 2 waves $2T = 0.05$ s $T = 0.025$ s $f = 1/0.025$ s = 40 Hz $\lambda = 3.00 \times 10^8$ m s ⁻¹ ÷ 40 Hz = 7.5×10^6 m	3

Q14.

Question Number	Answer	Mark
	Oscillations/vibrations of (air) particles/molecules/atoms (1)	
	Oscillations/vibrations/displacement parallel to direction of propagation Or Oscillations/vibrations/displacement parallel to direction of energy transfer (1)	
	(Producing) compressions and rarefactions Or regions of high and low pressure Or it is a longitudinal wave (1)	3
	Total for question	3

Q15.

Question Number	Answer	Mark
(a)	Oscillations/vibrations (of molecules) parallel to direction of propagation Or oscillations parallel to direction of wave travel Or oscillations parallel to direction of energy transfer Produces compressions and rarefactions	(1) (1) 2
(b)	Otherwise there wouldn't be a way of telling which bit of reflected sound originated with which bit of emitted sound Or so one returns before one emitted	(1) 1
(c) <i>i</i>	time ($= 1 \div 16 \text{ Hz}$) = 0.063 (s) (at least 2 sf)	(1) 1
(c) <i>ii</i>	Use of factor of 2 Use of $v = s/t$ distance = 48 m (Use of 'show that' value gives 46m)	(1) (1) (1) 3
<u>Example of calculation</u> $2 \times \text{distance} = 1530 \text{ m s}^{-1} \times 0.063 \text{ s}$ distance = 48 m		
(c) <i>iii</i>	A shorter time between clicks because the distance is shorter Or more frequent clicks allow rapid motion to be perceived. Or allow position to be determined precisely/accurately.	(1) 1
(d)	Speed in air lower than speed in water So wavelength in air shorter than wavelength in water Or pulse length in air is shorter than pulse length in water Or attempt at numerical comparison of wavelength or pulse length	(1) (1)
	So bat echolocation will detect smaller targets Or detect smaller differences in position (conditional on MP2) (Accept 'show more detail' or 'better resolution')	(1) 3
Total for question		11