


## Mark Scheme

Q1.

| Question Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mark                                                                           |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| a               | <p>Ammeter in series with cell, voltmeter in parallel with cell<br/>Variable resistor</p>  <p>(Voltmeter can be drawn in parallel with the (variable) resistor for MP1, as long as there are no other components with resistance in the circuit).</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)<br>(1)<br>2                                                                |
| b               | <p>Line of best fit drawn<br/> <math>\epsilon = 0.28 - 0.29 \text{ V}</math><br/> (Magnitude of) gradient calculated using a best fit line<br/> <math>r = 400 - 430 \Omega</math></p> <p>(If no best fit line has been drawn, only MP2 and MP4 are available)</p> <p><u>Example of calculation</u><br/> <math>\text{Gradient} = \Delta V / \Delta I = -0.18 \text{ V} / (0.44 \times 10^{-3} \text{ A}) = -409 \Omega</math><br/> so <math>r = 409 \Omega</math></p>                                                                                                                                                                                                                                                                                                                                            | (1)<br>(1)<br>(1)<br>(1)<br>4                                                  |
| c               | <p>In series/A there is a greater (combined) resistance than in parallel/B<br/> Or Resistance in series/A is <math>2R</math>, resistance in parallel/B is <math>R/2</math>.</p> <p>So greater current in parallel/B Or so less current in series/A</p> <p>As <math>\epsilon</math> and <math>r</math> the same Or since <math>\epsilon = V + Ir</math> Or more lost volts in parallel/B</p> <p>Terminal potential difference is greater in series/A</p> <p><b>OR</b></p> <p>In series/A there is a greater (combined) resistance than in parallel/B<br/> Or Resistance in series/A is <math>2R</math>, resistance in parallel/B is <math>R/2</math>.</p> <p>as <math>\epsilon</math> and <math>r</math> the same</p> $V = \frac{\epsilon R}{R + r}$ <p>Terminal potential difference is greater in series/A</p> | (1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>4 |
|                 | <b>Total for question</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>10</b>                                                                      |



Q2.

| Question Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mark                                                                                               |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| a               | Energy (supplied) to/per unit charge<br>Or Work done (supplied) to/per unit charge<br>Or The work done moving unit charge around the whole circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1)<br>(1)                                                                                         |
| bi              | Use of sum of e.m.f. = sum of p.d.<br>Or see $\mathcal{E} = V + Ir$ with correct substitutions<br>$r = 1.9 \times 10^{-2} \Omega$<br><u>Example of calculation</u><br>$\mathcal{E} = V + Ir$ , $12.0 \text{ V} = 11.81 \text{ V} + (9.83 \text{ A}) r$ . so $r = 0.0193 \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1)<br>(1)<br>(1)<br>(2)                                                                           |
| bii             | Plot $V$ against $I$<br>Determine the gradient<br>Gradient is $-r$<br><br>OR<br>Plot $I$ against $V$<br>Determine the gradient<br>Gradient is $-(1/r)$<br><br>OR<br>Plot $(\mathcal{E} - V)$ against $I$<br>Determine the gradient<br>Gradient is $r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1)<br>(1)<br>(1)<br><br>(1)<br>(1)<br>(1)<br><br>(1)<br>(1)<br>(1)<br><br>(3)                     |
| c               | Calculates circuit current using $I = \mathcal{E} / \text{Total } R$<br>Or Calculates p.d. across fixed resistor using potential divider equation<br><br>Use of a power equation (to calculate Power dissipated in fixed resistor)<br><br>Divides final power by initial power<br>Or Divides difference in power by initial power<br>Or Calculates 70% of initial power<br><br>Calculated value for final power/initial power is greater than 70% of initial power so student incorrect<br>Or Calculated value for difference between initial and final power is less than 30% so student incorrect<br>Or Calculated value for 70% of initial power is less than the final power so student incorrect<br><br>(Candidates who use incorrect values of I, V or R in either power calculation for MP2 cannot be awarded MP3 or MP4)<br><br><u>Example of calculation</u><br>Initially $I = \mathcal{E} / \text{Total } R = 9.0 \text{ V} / (5.0 + 0.10 \Omega) = 1.76 \text{ A}$<br>Power of external resistor = $I^2 R = (1.76 \text{ A})^2 (5.0 \Omega) = 15.5 \text{ W}$<br>When $r = 0.50 \Omega$ , $I = \mathcal{E} / \text{Total } R = 9.0 \text{ V} / (5.0 + 0.50 \Omega) = 1.64 \text{ A}$<br>Power of external resistor = $I^2 R = (1.64 \text{ A})^2 (5.0 \Omega) = 13.4 \text{ W}$<br>Percentage of original value = $(13.4 \text{ W}) / (15.5 \text{ W}) = 0.86$ (or 86%) | (1)<br>(1)<br><br>(1)<br><br>(1)<br><br>(1)<br><br>(1)<br><br>(1)<br><br>(1)<br><br>(1)<br><br>(4) |

Q3.

| Question Number           | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mark      |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>a</b>                  | Use of $V = W / Q$ or $W = VIt$ (1)<br>$\epsilon = 1.56$ (V) (1)<br>Use of $V = IR$ (1)<br>Sum of e.m.f.s = Sum of p.d.s <b>Or</b> see $\epsilon = V + Ir$ (1)<br>$r = 2.6 \Omega$ (1)<br><b>OR</b><br>Use of $W = Pt$<br>With $P = I^2R$<br>with $R = r + 12$ (1)<br>All other data correctly substituted ( $50 = (0.107)^2 (r + 12) 300$ ) (1)<br>$r = 2.6 \Omega$ (1)<br><u>Example of calculation</u> (1)<br>$\epsilon = W / Q = (50 \text{ J}) / (0.107 \text{ A})(300 \text{ s}) = 1.56 \text{ V}$<br>$\epsilon = IR + Ir$ , $1.56 \text{ V} = (0.107 \text{ A}) (12 \Omega) + (0.107 \text{ A}) r$ ,<br>$r = 2.56 \Omega$ | <b>5</b>  |
| <b>b</b>                  | (Increasing $R$ ) decreases $I$<br><b>Or</b> (Increasing $R$ ) gives $R$ a greater share of the total resistance in the circuit (1)<br><br>Less p.d. across internal resistance<br><b>Or</b> $Ir$ becomes less<br>(Accept decrease in 'lost volts') (1)                                                                                                                                                                                                                                                                                                                                                                          | <b>2</b>  |
| <b>c</b>                  | Take readings for p.d. and current (1)<br>Change resistance / $R$ (1)<br>Plot a graph of $V$ against $I$ (1)<br>Gradient is $-r$ . (1)<br><br>(MP4 conditional on MP3)<br>(Allow MP3/4 for graph of $I$ - $V$ with gradient $-1/r$ )<br>(A sketch graph of $V$ - $I$ with the gradient labelled $-r$ can achieve MP3/4)                                                                                                                                                                                                                                                                                                          | <b>4</b>  |
| <b>Total for question</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>11</b> |

QQ.

| Question Number | Acceptable Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Additional Guidance                                                | Mark |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------|
| (a)             | <ul style="list-style-type: none"> <li>Means of varying the current (1)</li> <li>Ammeter, voltmeter and variable resistor correctly connected (1)</li> </ul>                                                                                                                                                                                                                                                                                                                      | Accept a circuit that will allow correct measurements to be taken. | 2    |
| (b)             | <p>An explanation that makes reference to:</p> <ul style="list-style-type: none"> <li>Vary the current using the variable resistor (1)</li> <li>Record corresponding values for <math>I</math> and <math>V</math> (1)</li> <li>Graph of <math>V</math> against <math>I</math> is a straight line with negative gradient (1)</li> <li>The e.m.f. is given by the intercept on the <math>V</math> axis (1)</li> <li>The internal resistance is given by the gradient (1)</li> </ul> |                                                                    | 5    |

This question must be marked holistically in the context of the candidate's answer, and marks awarded wherever they appear.

| Question Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   | Mark                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 5(a)            | <p>(a) <i>Correct circuit diagram</i><br/>Cell, ammeter, voltmeter and a resistive component<br/>variable resistor in working circuit [correct circuit symbol only ]</p> <p>(b) <i>State the quantities to be measured</i><br/>potential difference, current</p> <p>(c) <i>for two of these quantities explain your choice of measuring instrument,</i><br/>1st instrument<br/>reason<br/>2nd instrument<br/>reason</p> <p><u>Examples of answer</u><br/>P.d.: voltmeter or multimeter on voltage scale (stated or implied)<br/>0.1 V interval or better because 1.5 V cell<br/>Or measures up to 2V because 1.5 V cell<br/>Current: ammeter or multimeter on current scale (stated or implied)<br/>0.1 A interval or better because 1.5 V cell<br/>Or measures up to 2A because 1.5 V cell</p> <p>(d) <i>Explain how the data will be used</i><br/>graph drawn of p.d. against current<br/>intercept is emf<br/>gradient is <math>(-r)</math></p> <p>(e) <i>identify the main sources of uncertainty and/or systematic error:</i><br/><b>Max 2</b><br/>Systematic/zero error on meter<br/>parallax errors if analogue meter<br/>accuracy of meters<br/>fluctuating reading on digital meter</p> <p>(f) <i>appropriate comment on safety</i></p> <p><u>Examples of answer</u><br/>Avoid touching hot wires<br/>Low voltage so no risk of electrocution<br/>Ensure cell is not short-circuited otherwise cell will get hot</p> | (1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1) | 2<br>1<br>4<br>3<br>2<br>1 |
|                 | <b>Total for question 7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                   | <b>13</b>                  |

| Question | Answer                                                                                                                                                                                                                                                                                                          | Marks |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(a)     | gradient = $\frac{R}{E}$<br>y-intercept = $\frac{r}{E}$                                                                                                                                                                                                                                                         | 1     |
| 6(b)     | 29 or 29.4<br>22 or 21.7<br>18 or 17.9<br>15 or 15.2<br>13 or 13.2<br>12 or 11.9                                                                                                                                                                                                                                | 1     |
|          | absolute uncertainties in $1/I$ from $\pm 2$ (or $\pm 1$ ) to $\pm 0.2$ , $\pm 0.3$ or $\pm 0.4$ . Allow a mixture of significant figures.                                                                                                                                                                      | 1     |
| 6(c)(i)  | Six points plotted correctly.<br>Must be within half a small square. Diameter of points must be less than half a small square.<br><br>Error bars in $1/I$ plotted correctly.<br>All error bars to be plotted. Length of bar must be accurate to less than half a small square and symmetrical.                  | 1     |
| 6(c)(ii) | Line of best fit drawn.<br>Points must be balanced. Line should pass to the left of (0.50, 29.6) and line should pass between (0.210, 16) and (0.225, 16).<br><br>Worst acceptable line drawn (steepest or shallowest possible line that passes through all the error bars).<br>All error bars must be plotted. | 1     |

| Question  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(c)(iii) | Gradient determined with clear substitution of points from line of best fit into $\Delta y/\Delta x$ .<br>Distance between points must be at least half the length of the drawn line.                                                                                                                                                                                                                                   | 1     |
|           | uncertainty = gradient of line of best fit – gradient of worst acceptable line<br><b>or</b><br>uncertainty = $1/2$ (steepest worst line gradient – shallowest worst line gradient)                                                                                                                                                                                                                                      | 1     |
| 6(c)(iv)  | $y$ -intercept determined by substitution into $y = mx + c$ .<br><br>$y$ -intercept of worst acceptable line determined by substitution into $y = mx + c$ .<br><br>uncertainty = $y$ -intercept of line of best fit – $y$ -intercept of worst acceptable line<br><b>or</b><br>uncertainty = $1/2$ (steepest worst line $y$ -intercept – shallowest worst line $y$ -intercept)<br><br>Do not allow if false origin used. | 1     |
| 6(d)(i)   | $E$ calculated using gradient.<br>Correct substitution of numbers required.<br><br>$E = \frac{470}{\text{gradient}} = \frac{470}{(\text{c})(\text{iii})}$                                                                                                                                                                                                                                                               | 1     |
|           | $r$ calculated using $y$ -intercept.<br>Correct substitution of numbers required.<br><br>$r = E \times y\text{-intercept}$                                                                                                                                                                                                                                                                                              | 1     |
|           | $E$ and $r$ determined using correct method with:<br>• Unit of $E$ with correct power of ten – e.g. $V$ , $A\Omega$<br>• Unit of $r$ with correct power of ten – e.g. $\Omega$ , $VA^{-1}$<br>• $E$ and $r$ given to 2 or 3 significant figures.                                                                                                                                                                        | 1     |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(d)(ii) | <p>Percentage uncertainty in <math>r</math> determined.<br/>Correct substitution of numbers required.</p> <p>%uncertainty in gradient + %uncertainty in <math>R</math> (1.06%) + %uncertainty in <math>y</math>-intercept<br/><b>or</b><br/>%uncertainty in <math>E</math> + %uncertainty in <math>y</math>-intercept</p> <p>Maximum/minimum methods:</p> $\max r = \max y\text{-intercept} \times \max E$ $\max r = \max y\text{-intercept} \times \frac{\max R(475)}{\min \text{gradient}}$ $\min r = \min y\text{-intercept} \times \min E$ $\min r = \min y\text{-intercept} \times \frac{\min R(465)}{\max \text{gradient}}$ | 1     |

|             | Mark | Expected Answer                                                                                                                                                                                                                                                        | Additional Guidance                                                                                                                                                                                                           |             |             |             |             |             |                                                                  |
|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|------------------------------------------------------------------|
| 7 (a)       | A1   | $\text{gradient} = \frac{4\rho}{\pi Ed^2}$ $y\text{-intercept} = \frac{r}{E}$                                                                                                                                                                                          |                                                                                                                                                                                                                               |             |             |             |             |             |                                                                  |
| (b)         | T1   | $\frac{1}{I} / \text{A}^{-1}$                                                                                                                                                                                                                                          | Allow $\frac{1}{I} (\text{A}^{-1})$ or $\frac{1}{I} \left( \frac{1}{A} \right)$ .                                                                                                                                             |             |             |             |             |             |                                                                  |
|             | T2   | <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>4.2 or 4.17</td></tr> <tr><td>5.0 or 5.00</td></tr> <tr><td>5.9 or 5.88</td></tr> <tr><td>6.7 or 6.67</td></tr> <tr><td>7.7 or 7.69</td></tr> <tr><td>8.3 or 8.33</td></tr> </table> | 4.2 or 4.17                                                                                                                                                                                                                   | 5.0 or 5.00 | 5.9 or 5.88 | 6.7 or 6.67 | 7.7 or 7.69 | 8.3 or 8.33 | Allow a mixture of significant figures.<br>Must be table values. |
| 4.2 or 4.17 |      |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |             |             |             |             |             |                                                                  |
| 5.0 or 5.00 |      |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |             |             |             |             |             |                                                                  |
| 5.9 or 5.88 |      |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |             |             |             |             |             |                                                                  |
| 6.7 or 6.67 |      |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |             |             |             |             |             |                                                                  |
| 7.7 or 7.69 |      |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |             |             |             |             |             |                                                                  |
| 8.3 or 8.33 |      |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |             |             |             |             |             |                                                                  |
|             | U1   | $\pm 0.2$ to $\pm 0.6$ or $\pm 0.7$ or $\pm 0.8$                                                                                                                                                                                                                       | Allow more than one significant figure.                                                                                                                                                                                       |             |             |             |             |             |                                                                  |
| (c) (i)     | G1   | Six points plotted correctly                                                                                                                                                                                                                                           | Must be within half a small square.<br>Do not allow "blobs".<br>ECF allowed from table.                                                                                                                                       |             |             |             |             |             |                                                                  |
|             | U2   | Error bars in $1/I$ plotted correctly                                                                                                                                                                                                                                  | All error bars to be plotted. Must be accurate to less than half a small square. Length of bar must be accurate to less than half a small square. Do not allow less than 0.05.                                                |             |             |             |             |             |                                                                  |
| (ii)        | G2   | Line of best fit                                                                                                                                                                                                                                                       | If points are plotted correctly then lower end of line should pass between (41, 4.5) and (44, 4.5) <b>and</b> upper end of line should pass between (83, 8.0) and (88, 8.0).<br>Line should not go from bottom to top points. |             |             |             |             |             |                                                                  |
|             | G3   | Worst acceptable straight line.<br>Steepest or shallowest possible line that passes through <u>all</u> the error bars.                                                                                                                                                 | Line should be clearly labelled or dashed.<br>Examiner judgement on worst acceptable line.<br>Lines must cross. Mark scored only if error bars are plotted.                                                                   |             |             |             |             |             |                                                                  |
| (iii)       | C1   | Gradient of line of best fit                                                                                                                                                                                                                                           | The triangle used should be at least half the length of the drawn line. Check the read-offs. Work to half a small square. Do not penalise POT. (Should be about 8.)                                                           |             |             |             |             |             |                                                                  |
|             | U3   | Absolute uncertainty in gradient                                                                                                                                                                                                                                       | Method of determining absolute uncertainty: difference in worst gradient and gradient.                                                                                                                                        |             |             |             |             |             |                                                                  |
| (iv)        | C2   | y-intercept                                                                                                                                                                                                                                                            | Check substitution into $y = mx + c$ .<br>Allow ECF from (c)(iii).<br>(Should be about 0.7–1.5.)                                                                                                                              |             |             |             |             |             |                                                                  |

|         |    |                                                                                                                                                                |                                                                                                                                                                                          |
|---------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | U4 | Absolute uncertainty in $y$ -intercept                                                                                                                         | Uses worst gradient and point on WAL.<br>Do not check calculation.                                                                                                                       |
| (d) (i) | C3 | $\rho = 2.415 \times 10^{-7} \times \text{gradient}$<br>Must be in the range $1.80 \times 10^{-6}$ to $2.10 \times 10^{-6}$ <u>and</u><br>given to 2 or 3 s.f. | Must use gradient.<br>$\rho = \frac{\pi Ed^2}{4} \times \text{gradient}$<br>$[2 \times 10^{-6} \Omega \text{m} = 2 \times 10^{-4} \Omega \text{cm} = 2 \times 10^{-3} \Omega \text{mm}]$ |
|         | C4 | $r = E \times y\text{-intercept}$<br>$= 3.2 \times y\text{-intercept}$<br><u>and</u> $\Omega \text{m}$ <u>and</u> $\Omega$ given                               | Must include units for $\rho$ and $r$ .<br>Allow $\text{VA}^{-1}$ or $\text{kg m}^2 \text{A}^{-2} \text{s}^{-3}$ for $\Omega$ .                                                          |
| (ii)    | U5 | Percentage uncertainty in $\rho$                                                                                                                               | Must be greater than 9.6%.                                                                                                                                                               |

### Uncertainties in Question 2

#### (c) (iii) Gradient [U3]

uncertainty = gradient of line of best fit – gradient of worst acceptable line

uncertainty =  $\frac{1}{2}$  (steepest worst line gradient – shallowest worst line gradient)

#### (iv) [U4]

uncertainty =  $y$ -intercept of line of best fit –  $y$ -intercept of worst acceptable line

uncertainty =  $\frac{1}{2}$  (steepest worst line  $y$ -intercept – shallowest worst line  $y$ -intercept)

#### (d) (ii) [U5]

$$\begin{aligned}
 \text{percentage uncertainty} &= \left( \frac{\Delta m}{m} + \frac{0.1}{3.2} + 2 \times \frac{0.01}{0.31} \right) \times 100 \\
 &= \left( \frac{\Delta m}{m} \times 100 \right) + 3.125 + 2 \times 3.226
 \end{aligned}$$

$$\text{max. } \rho = \frac{\pi \times 3.3 \times (0.32 \times 10^{-3})^2}{4} \times \text{max. gradient}$$

$$\text{min. } \rho = \frac{\pi \times 3.1 \times (0.30 \times 10^{-3})^2}{4} \times \text{min. gradient}$$