

Marking Scheme

1.

Question			Marking details	Marks Available
5	(a)	(i)	[Maximum] kinetic energy of emitted electron[s]	1
		(ii)	Photon energy	1
		(iii)	[Minimum] energy needed to release [or eject] electron from surface [or metal or solid]	1
	(b)		$\phi = hf_0$ or by implication (1) $f = 3f_0$ (1)	2
	(c)	(i)	I attempt at gradient calculation even if slips, e.g. in 10^n (1) $h = 6.8 [\pm 0.2] \times 10^{-34} \text{ [J s]}$ (1)	2
		II	$\phi = 3.1 [\pm 0.1] \times 10^{-19} \text{ [J]}$ Don't accept a negative ϕ	1
		(ii)	$\phi_{\text{sodium}} = \phi_{\text{caesium}} + 0.6$ [or 0.7] $\times 10^{-19} \text{ J}$ or parallel line or use of equation (1) $\phi_{\text{sodium}} = 3.7 [\pm 0.3] \times 10^{-19} \text{ [J]}$ ecf (1)	2
			Question 5 Total	[10]

2.

3	(a)		Electrons are emitted [from tin] (1). Electrons are negatively charged [or plate originally neutral] or electrons knocked out by photons (1) Plate left with a positive charge (1)	3
	(b)	(i)	Work function: [Minimum] energy [or work] needed for an electron to escape [from metal surface]	1
		(ii)	$hf_{\text{min}} = \phi$ [or by impl.] or $0 = 6.63 \times 10^{-34} f_{\text{min}} - 7.1 \times 10^{-19}$ (1)	
		(iii)	$f_{\text{min}} = 1.07 \times 10^{15} \text{ Hz}$ (1) $1.5 \times 10^{-19} = hf - 7.1 \times 10^{-19}$ [or equiv. or by impl.] (1) $f = 1.3 \times 10^{15} \text{ Hz}$ (1)	2
	(c)	(i)	$\text{number per second} = \frac{0.64 \times 10^{-6} [\text{C s}^{-1}]}{1.6 \times 10^{-19} [\text{C}]}$	1
		(ii)	Number of photons per second = $4.0 \times 10^{12} \times 1200$ Multiplication by 1200 at any stage [or by impl.] (1) Photon energy = $8.6 \times 10^{-19} \text{ J}$ [or by impl.] (1) UV energy per second = $4.1 \text{ m}(1)W(1) [4.1 \times 10^{-3} \text{ J s}^{-1} \checkmark \checkmark]$	4
				[13]

3.	<p>(i) $[\pi \times 22^2](1) [\text{accept } \pi r^2] \times 14 (1) [=21287 \text{ m}^3 \text{ s}^{-1}]$ $[21287 \rightarrow 1 \text{ mark}]$</p> <p>(ii) mass every second = 1.2×21000 [or as calculated in (i)] $[= 25200] \text{ kg s}^{-1}$</p> <p>(iii) Initial $E_{k1} = \frac{1}{2} \times 25200 \times 14^2 (1) \text{ e.c.f. from (ii)}$ Final $E_{k2} = \frac{1}{2} \times 25200 \times 11^2 (1) \text{ e.c.f. from (ii)}$ $\Delta E_k = 945 \times 10^3 \text{ J s}^{-1} (1) \text{ e.c.f. from } E_{k1} \text{ and } E_{k2}$ NB. "Solutions" based upon $\frac{1}{2} m \times (14 - 11)^2 \rightarrow 0$</p> <p>(iv) Useful power available = $614250 \text{ J s}^{-1} (1) \text{ e.c.f. from (iii)}$ $N_{\text{turbines}} = \frac{1000 \times 10^6}{614250} [=1628] (1)$</p>	2 1 3 2
4.	<p>(a) [Minimum] energy needed to release [or eject] electron from magnesium [or metal or surface or solid not atom]</p> <p>(b) $E_{k\max} = 6.63 \times 10^{-34} \times 1.16 \times 10^{15} [\text{J}] - 5.9 \times 10^{-19} [\text{J}] (1)$ $E_{k\max} = 1.79 \times 10^{-19} [\text{J}] (1)$</p> <p>(c) Photon energy < work function (1) don't accept photon energy in symbols. Accept not enough energy to liberate an electron. Don't accept $E_{k\max}$ can't be negative. $E_{\text{phot}} = 5.4 \times 10^{-19} [\text{J}] \text{ accept } f_{\text{thresh}} = 8.9 \times 10^{14} [\text{Hz}] (1)$ If negative energy award 1 mark only</p> <p>(d) (i) Planck constant. Accept Planck's constant or h. (ii) [-] work function. Accept [-] ϕ. (iii) f_0 or minimum frequency to eject electron or threshold frequency</p>	1 2 2 1 1 1

5.	(a)	(i) Maximum k.e. of <u>emitted / photo electrons</u>	1
		(ii) Energy of a photon[s]	1
		(iii) [Minimum] energy needed to remove electron [from surface]. Don't accept from an atom	1
	(b)	(i) I. Gradient calculation attempted (l) – no penalty for wrong powers of 10. $6.6 [\pm 0.3] \times 10^{-34} [\text{J s}]$ (l) <u>agreeing with working</u>	2
		II. $f_{\text{thresh}} = 4.4 \times 10^{14} \text{ Hz}$ (l) $[\pm 0.1 \times 10^{14} \text{ Hz}]$ or valid algebraic method	
		$\phi = 2.9 \times 10^{-19} \text{ J}$ UNIT (l) ecf	2
	(ii)	I. 	2
		Correct point (l), parallel line (l)	1
		II. Ultraviolet [or UV]	1
		III. Lithium has higher work function / needs more energy to remove an electron	1

6.	(a)	<p>(i) ϕ is [minimum] energy needed to release an electron <u>from surface</u> [or <u>from metal</u> or <u>from material</u>]. (1) No marks for giving meaning of f_0. So [minimum] photon energy needed is ϕ. (1) So $hf_0 = \phi$ or $E_{\text{photon}} = hf$ (1)</p> <p>(ii) Award 2 x (1) of: <ul style="list-style-type: none"> More photons per second Individual photon energies unchanged E_{kmax} depends on energy of individual photon or $E_{\text{kmax}} = hf$ - ϕ does not include intensity. Accept: Photons don't co-operate [in releasing electrons]. </p>	[3]
	(b)	<p>Increase / adjust pd until nano-ammeter shows zero current [or equiv.] (1) Read voltmeter (1) or by implication $E_{\text{kmax}} = eV$ (1)</p>	[3]
	(c)	<p>(i) Gradient = $6.7 [\pm 0.2] \times 10^{-34} [\text{J s}]$ (1) Mention of Planck's constant and sensible comparison (1)</p> <p>(ii) $\phi = 4.1 [\pm 0.2] \times 10^{-19} [\text{J}]$ (1) barium but only award mark if some reasoning given e.g. correct reference to intercept (1)</p>	[2]

7.	Question	Marking details	Marks Available
	(a)	<p>Any 4 x (1) from:</p> <ul style="list-style-type: none"> light [energy] in discrete packets one electron ejected by one photon OR photons don't co-operate energy not accumulated [by electron] over time or emission from instant light shines intensity has no effect on E_{kmax} or accept intensity affects number emitted per second wave theory doesn't predict Einstein's equation or doesn't predict threshold frequency 	[4]
	(b)	<p>(i) $E_{\text{kmax}} = (6.63 \times 10^{-34} \times 8.7 \times 10^{14} - 3.8 \times 10^{-19})$ (1) $E_{\text{kmax}} = 1.97 \times 10^{-19} [\text{J}]$ (1)</p> <p>(ii) These photons eject electrons with smaller E_{kmax} (1) E_{kmax} same as previously with some explanation given (1)</p> <p>(iii) Correct use of $c = f\lambda$ (1) e.g. to give $\lambda_{\text{thresh}} = 523 [\text{nm}]$ OR $f_{400 \text{ nm}} = 7.5 \times 10^{14} [\text{Hz}]$ OR $f_{700 \text{ nm}} = 4.3 \times 10^{14} [\text{Hz}]$ Comparison of $400 [\text{nm}]$ with λ_{thresh} (1) or $7.5 \times 10^{14} [\text{Hz}]$ with f_{thresh} ($5.73 \times 10^{14} [\text{Hz}]$) or substitution of $7.5 \times 10^{14} [\text{Hz}]$ into Einstein's equation. Conclusion : It can (1) [if reasoned]</p>	[2]
		Question 4 Total	[3]
			[11]

8.	(a)	$f_{\text{Thresh}} = \frac{\phi}{h}$ (1) [or by impl.] = $5.1[3] \times 10^{14}$ [Hz] (1)	2
	(b)	(i) Photon $E = 6.63 \times 10^{-34} \times 7.4 \times 10^{14}$ [= 4.91×10^{-19} J][or by impl.](1) $E_{k\text{ max}} [= 4.91 \times 10^{-19} - 3.4 \times 10^{-19}] = 1.5 \times 10^{-19}$ [J] (1)	2
		(ii) [A single] photon gives its energy to an electron (1) Some of the energy used to escape from the metal (1).	2
	(c)	(i) Points plotted at $(5.1 \times 10^{14}$ Hz, 0) and $(7.4 \times 10^{14}$ Hz, 1.5×10^{-19} J) (1) Allow e.c.f. from (a) and (b)(i) Straight line drawn through points (1) (One correct point only and a positive slope line = 1 mark)	2
		(ii) h / the Planck constant	1
		(iii) Straight line drawn with same gradient as (i) and to the right	1